Detailed kinetic study of the ring opening of cycloalkanes by CBS-QB3 calculations.
نویسندگان
چکیده
This work reports a theoretical study of the gas-phase unimolecular decomposition of cyclobutane, cyclopentane and cyclohexane by means of quantum chemical calculations. A biradical mechanism has been envisaged for each cycloalkane, and the main routes for the decomposition of the biradicals formed have been investigated at the CBS-QB3 level of theory. Thermochemical data(DeltaHf(o), S(o), Cp(o)) for all the involved species have been obtained by means of isodesmic reactions. The contribution of hindered rotors has also been included. Activation barriers of each reaction have been analyzed to assess the energetically most favorable pathways for the decomposition of biradicals. Rate constants have been derived for all elementary reactions using transition-state theory at 1 atm and temperatures ranging from 600 to 2000 K. Global rate constant for the decomposition of the cyclic alkanes in molecular products have been calculated. Comparison between calculated and experimental results allowed us to validate the theoretical approach. An important result is that the rotational barriers between the conformers, which are usually neglected, are of importance in decomposition rate of the largest biradicals. Ring strain energies (RSE) in transition states for ring opening have been estimated and show that the main part of RSE contained in the cyclic reactants is removed upon the activation process.
منابع مشابه
Theoritical Kinetic Study of the Ring Opening of Cyclic Alkanes
This work reports a theoretical study of the gas phase unimolecular decomposition of cyclobutane, cyclopentane and cyclohexane by means of quantum chemical calculations. A biradical mechanism has been envisaged for each cycloalkane, and the main routes for the decomposition of the biradicals formed have been investigated at the CBSQB3 level of theory. Thermochemical data (H°f, S°, C°p) for all...
متن کاملTheoretical Determination of One-Electron Oxidation Potentials for Nucleic Acid Bases.
The oxidation potentials for N-methyl substituted nucleic acid bases guanine, adenine, cytosine, thymine, uracil, xanthine, and 8-oxoguanine were computed using B3LYP and CBS-QB3 with the SMD solvation model. Acid-base and tautomeric equilibria present in aqueous solution were accounted for by combining standard redox potentials with calculated pKa and tautomerization energies to produce an ens...
متن کاملTheoretical kinetic study of thermal unimolecular decomposition of cyclic alkyl radicals.
Whereas many studies have been reported on the reactions of aliphatic hydrocarbons, the chemistry of cyclic hydrocarbons has not been explored extensively. In the present work, a theoretical study of the gas-phase unimolecular decomposition of cyclic alkyl radicals was performed by means of quantum chemical calculations at the CBS-QB3 level of theory. Energy barriers and high-pressure-limit rat...
متن کاملExtension of the composite CBS-QB3 method to singlet diradical calculations
The composite CBS-QB3 method is widely used to obtain accurate energies of molecules and radicals although its use in the case of singlet diradicals gives rise to some difficulties. The problem is related to the parameterized correction this method introduces to account for spin-contamination. We report a new term specifically designed to describe singlet diradicals separated by at least one CH...
متن کاملUnimolecular decomposition of 2,5-dimethylfuran: a theoretical chemical kinetic study.
The unimolecular decomposition of 2,5-dimethylfuran (DMF), a promising next-generation biofuel, was studied at the CBS-QB3 level of theory. As most of its decomposition routes remain unknown, a large number of pathways were explored: initial C-H bond fission, biradical ring opening, H-atom and CH(3)-group transfers involving carbene intermediates. Based on the computed potential energy surfaces...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. A
دوره 110 46 شماره
صفحات -
تاریخ انتشار 2006